

Figure 5. Boiling temperature vs mole fraction x_{1} (liquid) and y_{1} (vapor) for the system vinyl acetate (1) + methyl methacrylate (2).

Boiling points of the binary system were correlated by the equation suggested by Wisniak and Tamir (12):

$$
\begin{align*}
t /{ }^{\circ} \mathrm{C}= & x_{1}\left(t^{\circ}{ }_{1} /{ }^{\circ} \mathrm{C}\right)+x_{2}\left(t^{\circ}{ }_{2} /{ }^{\circ} \mathrm{C}\right)+ \\
& x_{1} x_{2}\left[C_{0}+C_{1}\left(x_{1}-x_{2}\right)+C_{2}\left(x_{1}-x_{2}\right)^{2}+\ldots\right] \tag{5}
\end{align*}
$$

A simplex optimization technique yielded the values for the constants reported in Table VI.

Acknowledgment

Yehudit Reizner and Moshe Golden helped in the experimental part and numerical calculations.

Glossary

α, β, δ	Antoine constants, eq 1
$A_{i j}, \mathcal{A}_{j i}$	Wilson constants
B, C, D, E	Redlich-Kister coefficients, eq 2
C_{i}	coefficients in eq 5

n	number of experimental points
rmsd	root mean square deviation $\left\{\sum\left(T_{\text {expt }}-T_{\text {calc }}\right)^{2} / n\right\}^{0.5}$
t	temperature, ${ }^{\circ} \mathrm{C}$
t°	boiling temperature of pure component $i,{ }^{\circ} \mathrm{C}$ x_{i}, y_{i}
molar fraction of component i in the liquid and vapor γ_{i}	phases
activity coefficient of component i	

Subscripts

i, j	component i, j
calc	calculated
expt	experimental

Registry No. Propyl bromide, 106-94-5; 2-butanone, 78-93-3; p-xylene, 106-42-3; vinyl acetate, 108-05-4; methyl methacrylate, 80-62-6.

Literature Cited

(1) Chandrashekara, M. N.; Seshadri, D. N. J. Chem. Eng. Data 1979. 24, 6.
(2) Boublikova, L.; Lu, B. C.-Y. J. Appl. Chem. 1969, 19, 89.
(3) Wisniak, J.; Tamir, A. J. Chem. Eng. Data 1975, 20, 168.
(4) Wisniak, J.; Tamir, A. J. Chem. Eng. Data 1989, 34, 14.
(5) Tsonopoulos, C. AIChE J. 1974, $20,263$.
(6) Tsonopoulos, C. AIChE J. 1975, 21, 827.
(7) Herington, E. F. G. J. Inst. Pet. 1951, 30, 457.
(8) Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 345.
(9) Montgomery, D. C.; Peck, E. A. Introduction to Linear Regression Analysis; Wiley: New York, 1985.
(10) Wilson, G. H. J. Am. Chem. Soc. 1964, 86,127,
(11) Apelblat, A.; Wisniak, J. Ind. Eng. Chem. Res. 1989, 28, 324.
(12) Wisniak, J.; Tamir, A. Chem. Eng. Sci. 1975, 30, 335.
(13) TRC-Thermodynamic Tables-Hydrocarbons, Thermodynamics Research Center, The Texas A\&M University System: College Station, TX, 1985; p a-3290, p-xylene (loose-leaf data sheets). TRCThermodynamic Tables-Nonhydrocarbons; Thermodynamic Research Center, The Texas A\&M University System: College Station, TX, 1958, p a-7460 and 1956, p k-7430, propyl bromide; 1965, p 5370 and 1981, p k-5920, MEK (boose-leaf data sheets).
(14) Daubert, T. E.; Danner, R. P. Data Compilation Tables of Properties of Pure Compounds; Design Institute for Physical Properties, AICHE: New York, 1985.
(15) Perry, R. H. Perry's Chemical Engineer's Handbook, 6th ed.; McGrawHill: New York, 1984; p 3-58.
(16) Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. The Physical Properties of Gases and Liquids, 3rd ed.; McGraw-Hill: New York, 1977.

Received for review April 13, 1989. Revised October 2, 1989. Accepted November 13, 1989.

Vapor-Liquid Equilibria in the System Vinyl Acetate-Propyl Bromide-Methyl Methacrylate

Jaime Wisniak* and Abraham Tamir
Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105

> Vapor-liquid equillbrium at 760 mmHg has been determined for the title system. The ternary data were correlated by various equatlons, and the appropriate parameters are reported. No azeotrope is present.

The present work was undertaken to measure vapor-liquid equilibrium (VLE) data for the title system for which no isobaric data are available. Data for the three other binaries have already been measured (1, 2).

Experimental Section

Purtty of Materlals. Vinyl acetate analytical grade (99\% +) and methyl methacrylate $(99.4 \%+$) were purchased from Flu-

Table I. Physical Constants of Pure Components

index	compound	refractive index $\left(255^{\circ} \mathrm{C}\right)$	$\mathrm{bp}(760$ $\mathrm{mmH}),{ }^{\circ} \mathrm{C}$	purity GLC (min), \%
1	vinyl acetate	1.3932^{a}	72.56^{a}	99
2	propyl bromide	1.3934^{c}	72.49^{c}	
		1.4327^{a}	70.55^{a}	99.4
3	methyl	1.4118^{a}	10.80^{b}	
	methacrylate	1.4120^{d}	100.3^{a}	99.4

${ }^{a}$ Measured. ${ }^{b}$ Reference 11. ${ }^{\text {c }}$ Reference 12. ${ }^{d}$ Reference 14.
ka, propyl bromide (99.4%) from Merck. The reagents were used without further purification after gas chromatography failed to show any significant impurities. Properties of the pure

Table II. Experimental Vapor-Liquid Equilibria Data for Vinyl Acetate (1)-Propyl Bromide (2)-Methyl Methacrylate (3) at 760 mmHg

temp, ${ }^{\circ} \mathrm{C}$	x_{1}	x_{2}	y_{1}	y_{2}	γ_{1}	γ_{2}	γ_{3}	temp, ${ }^{\circ} \mathrm{C}$	x_{1}	x_{2}	y_{1}	y_{2}	γ_{1}	γ_{2}	γ_{3}
70.80	0.257	0.693	0.280	0.700	1.145	1.015	1.062	77.90	0.650	0.076	0.751	0.114	0.977	1.277	1.036
71.00	0.323	0.608	0.348	0.625	1.126	1.028	1.034	78.10	0.450	0.200	0.538	0.287	1.003	1.165	1.046
71.10	0.380	0.541	0.393	0.577	1.079	1.064	1.001	78.20	0.251	0.381	0.311	0.500	1.037	1.063	1.073
71.70	0.600	0.331	0.580	0.394	0.990	1.164	0.973	78.20	0.111	0.527	0.149	0.667	1.123	1.025	1.061
71.70	0.496	0.420	0.500	0.467	1.032	1.090	1.015	78.50	0.431	0.217	0.517	0.306	0.995	1.133	1.040
71.70	0.460	0.441	0.471	0.490	1.047	1.088	1.017	78.50	0.476	0.168	0.578	0.244	1.006	1.166	1.032
71.70	0.674	0.272	0.665	0.314	1.009	1.131	1.002	79.40	0.353	0.253	0.435	0.356	0.993	1.100	1.064
71.80	0.715	0.237	0.696	0.288	0.991	1.185	0.854	79.60	0.391	0.197	0.498	0.290	1.021	1.145	1.026
71.90	0.097	0.846	0.118	0.856	1.238	0.986	1.170	79.80	0.436	0.166	0.539	0.245	0.983	1.140	1.073
72.00	0.792	0.183	0.777	0.215	0.994	1.140	0.815	79.90	0.582	0.052	0.726	0.079	0.991	1.171	1.050
72.10	0.086	0.806	0.147	0.820	1.726	0.985	0.777	80.00	0.333	0.250	0.420	0.361	0.999	1.110	1.033
72.50	0.165	0.729	0.192	0.763	1.161	1.001	1.067	80.40	0.348	0.209	0.452	0.306	1.015	1.112	1.062
72.60	0.184	0.699	0.210	0.746	1.135	1.018	0.941	80.60	0.041	0.550	0.055	0.697	1.043	0.958	1.172
72.60	0.610	0.282	0.619	0.336	1.009	1.136	1.043	81.00	0.207	0.317	0.286	0.460	1.061	1.084	1.018
72.70	0.530	0.345	0.538	0.410	1.007	1.131	1.040	82.30	0.135	0.351	0.191	0.510	1.047	1.047	1.067
72.70	0.600	0.287	0.621	0.336	1.025	1.112	0.948	82.50	0.220	0.263	0.309	0.396	1.032	1.079	1.038
72.70	0.662	0.239	0.671	0.290	1.004	1.152	0.981	83.00	0.206	0.248	0.299	0.389	1.049	1.106	1.022
72.80	0.548	0.324	0.550	0.402	0.992	1.177	0.933	83.20	0.289	0.207	0.380	0.306	0.45	1.037	1.108
72.80	0.756	0.168	0.756	0.215	0.987	1.212	0.946	83.70	0.450	0.056	0.609	0.082	0.959	1.014	1.094
72.90	0.799	0.140	0.792	0.181	0.977	1.223	1.095	84.70	0.447	0.018	0.631	0.032	0.972	1.198	1.068
72.90	0.031	0.883	0.040	0.922	1.269	0.986	1.092	84.90	0.339	0.100	0.486	0.160	0.981	1.071	1.063
73.20	0.044	0.834	0.056	0.887	1.240	0.995	1.144	85.00	0.146	0.264	0.217	0.406	1.013	1.026	1.075
73.30	0.036	0.866	0.46	0.908	1.245	0.981	1.148	85.10	0.383	0.046	0.568	0.064	1.008	0.926	1.080
73.50	0.050	0.804	0.065	0.866	1.256	0.999	1.148	85.90	0.380	0.043	0.557	0.073	0.976	1.107	1.048
73.60	0.144	0.681	0.167	0.756	1.116	1.027	1.065	86.20	0.260	0.115	0.389	0.197	0.986	1.107	1.075
73.80	0.041	0.879	0.054	0.913	1.262	0.957	0.989	86.20	0.146	0.227	0.218	0.370	0.983	1.052	1.064
73.90	0.632	0.220	0.660	0.280	0.996	1.167	0.970	86.30	0.136	0.231	0.211	0.380	1.018	1.058	1.042
74.00	0.580	0.255	0.612	0.320	1.006	1.150	0.986	86.90	0.274	0.094	0.412	0.165	0.969	1.111	1.059
74.00	0.233	0.561	0.272	0.639	1.112	1.043	1.035	88.70	0.227	0.086	0.361	0.154	0.972	1.078	1.056
74.40	0.679	0.162	0.717	0.215	0.994	1.201	1.009	90.70	0.077	0.193	0.118	0.312	0.885	0.921	1.101
74.60	0.277	0.483	0.321	0.573	1.082	1.066	1.037	90.90	0.175	0.061	0.305	0.120	1.000	1.114	1.054
74.80	0.442	0.342	0.485	0.420	1.018	1.097	1.024	91.10	0.227	0.030	0.365	0.053	0.917	0.995	1.090
75.00	0.628	0.182	0.674	0.243	0.989	1.185	1.008	91.50	0.197	0.040	0.339	0.080	0.971	1.115	1.046
75.10	0.146	0.629	0.177	0.715	1.115	1.007	1.107	92.20	0.102	0.095	0.183	0.188	0.992	1.082	1.055
75.20	0.327	0.412	0.380	0.505	1.065	1.082	1.014	92.40	0.144	0.064	0.251	0.120	0.960	1.022	1.065
75.30	0.480	0.294	0.516	0.380	0.982	1.137	1.053	92.40	0.126	0.081	0.223	0.161	0.975	1.083	1.040
75.70	0.700	0.105	0.765	0.146	0.986	1.209	1.028	92.40	0.201	0.015	0.343	0.030	0.939	1.088	1.070
76.50	0.586	0.153	0.663	0.215	0.996	1.195	1.028	95.30	0.094	0.030	0.180	0.066	0.969	1.106	1.055
76.80	0.737	0.059	0.826	0.080	0.980	1.145	1.002	95.40	0.051	0.080	0.099	0.163	0.981	1.022	1.037
76.90	0.615	0.119	0.704	0.172	0.997	1.216	1.013	95.90	0.063	0.057	0.108	0.105	0.852	0.910	1.076
77.00	0.570	0.167	0.636	0.233	0.967	1.169	1.077	97.60	0.065	0.020	0.111	0.037	0.810	0.874	1.065
77.70	0.530	0.154	0.626	0.224	1.003	1.195	1.005	98.00	0.016	0.041	0.033	0.090	0.966	1.025	1.050

components appear in Table I.
Apparalus and Procedure. An all-glass modified Dvorak and Boublik recirculation still (3) was used in the equilibrium determination. A vacuum system connected the vapor condenser with a Swietoslawski ebulliometer and allowed total pressure regulation. The total pressure of the system was determined from the boiling temperature of the distilled water in the ebulliometer. The experimental features have been described in a previous publication (4). All analyses were carried out by gas chromatography on a Packard-Becker Model 417 apparatus provided with a thermal conductivity detector and a Spectra Physics Model SP 4290 electronic integrator. The column was 3 m long and 0.2 cm in diameter and was filled with $20 \% \mathrm{SP}$ 2100 and operated at $65^{\circ} \mathrm{C}$. The temperatures at the detector and injector were 210 and $120^{\circ} \mathrm{C}$, respectively. Very good separation was achieved under these conditions, and calibration analyses were carried to convert the peak ratio to the weight composition of the sample. Concentration measurements were accurate to better than $\pm 1 \%$. The accuracy in the determination of pressure and temperature was $\Delta P= \pm 1 \mathrm{mmHg}$ and $\Delta t= \pm 0.02{ }^{\circ} \mathrm{C}$.

Results

The temperature-concentration measurements at 760 mmHg for the ternary system are reported in Table II, together with

Table III. Vapor-Pressure Constants

compound	α_{i}	β_{i}	δ_{i}
vinyl acetate a	6.99227	1191.99	217.01
propyl bromide			
methyl methacrylate c	6.91065	1194.889	225.51
${ }^{b}$	7.1090	1387.86	226.15

${ }^{a}$ Reference $13 .{ }^{b}$ Reference 11 . ${ }^{\mathrm{c}}$ Reference 2.
the activity coefficients that were calculated from the following equation (5):

$$
\begin{align*}
& \ln \gamma_{i}=\ln \left(P y_{i} / P_{i}{ }^{\circ} x_{j}\right)+\left(B_{i l}-V_{i}^{\llcorner }\right)\left(P-P_{i}^{\circ}\right) / R T+ \\
&(P / 2 R T) \sum y_{j} y_{k}\left(2 \delta_{\mu}-\delta_{j k}\right) \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
\delta_{j i}=2 B_{j i}-B_{i j}-B_{i j} \tag{2}
\end{equation*}
$$

Vapor pressures $P_{I}{ }^{\circ}$ were calculated according to Antoine's equation:

$$
\begin{equation*}
\log P_{i}{ }^{\circ}=\alpha_{i}-\beta_{i} /\left(\delta_{i}+t\right) \tag{3}
\end{equation*}
$$

where the constants are reported in Table III. The molar virial coefficients $B_{i j}$ and the molar mixed coefficient $B_{i j}$ were calculated by the method of Tsonopoulos (6) using the molecular parameters suggested by the same author. The last two terms contributed between 1% and 2% to the activity coefficient, and their influence was important only at very dilute concentrations.

Table IV. Redlich-Kister Correlation of Ternary Data, Equation 4

			$D_{i j}$	$\mathrm{rmsd}^{\text {a }}$		
system	$B_{i j}$	$\mathrm{C}_{i j}$		γ_{1}	$1 \quad 12$	
vinyl acetate (1)propyl bromide (2) vinyl acetate (1)methyl methacrylate (3) ${ }^{\text {b }}$ propyl bromide (2)methyl methacrylate $(3)^{6}$	0.27051	-0.010220 0	0.13950	0.025	0.39	
system		C_{1}	overall rmsd^{c}			
		$\gamma_{i j}$	$y_{i j}$			
vinyl acetate (1)-propyl	bromide		(2) 0	0.17	$\begin{aligned} & 0.023 \\ & 0.023 \end{aligned}$	
methyl methacrylate (3)		-2.2543	30.17			
${ }^{\mathrm{a}}$ rmsd $=$ room mean squa average.	are devia	ions. ${ }^{b}$ Ideal	system.	${ }^{c} \text { Weig }$	Weighted	

Table V. Correlation of Boiling Points, Equation 5

system	C_{0}	C_{1}	C_{2}	rmsd a
vinyl acetate (1)- propyl bromide (2)	-9.0730	0.50615	0.22946	0.066
vinyl acetate (1)- methyl methacrylate (3)	-9.1901	2.6248		0.18
propyl bromide (2)- methyl methacrylate (3)	-13.973	6.8921		0.13
\quad system	A	B	rmsd^{a}	
vinyl acetate (1)-propyl bromide (2)- methyl methacrylate (3)	0.87533	-2.7274	0.401	
${ }^{\text {a }}$ rmsd $=$ room mean square deviation.				

The ternary data reported in Table II were found to be thermodynamically consistent as tested by the McDermot-Ellis method (7) modified by Wisniak and Tamir (8).

The activity coefficients for the ternary system were correlated by the following Redlich-Kister expansion (9):

$$
\begin{align*}
& \text { In } \gamma_{1}=x_{2} x_{3}\left[\left(B_{12}+B_{13}-B_{23}\right)+C_{12}\left(2 x_{1}-x_{2}\right)+\right. \\
& C_{13}\left(2 x_{1}-x_{3}\right)+2 C_{23}\left(x_{3}-x_{2}\right)+D_{12}\left(x_{1}-x_{2}\right)\left(3 x_{1}-\right. \\
& \left.x_{2}\right)+D_{13}\left(x_{1}-x_{3}\right)\left(3 x_{1}-x_{2}\right)-3 D_{23}\left(x_{3}-x_{2}\right)^{2}+C_{1}(1- \\
& \left.\left.2 x_{1}\right)\right]+x_{2}{ }^{2}\left[B_{12}+C_{12}\left(3 x_{1}-x_{2}\right)+D_{12}\left(x_{1}-x_{2}\right)\left(5 x_{1}-\right.\right. \\
& \left.\left.x_{2}\right]\right]+x_{3}^{2}\left[B_{13}+C_{13}\left(3 x_{1}-x_{3}\right)+D_{13}\left(x_{1}-x_{3}\right)\left(5 x_{1}-x_{3}\right)\right] \tag{4}
\end{align*}
$$

where $B_{i j}, C_{l j}$, and $D_{i j}$ are the binary constants and C_{1} is a ternary constant. The equations for two other activity coefficients were obtained by cyclic rotation of the indices. The binary data used for calculating the binary constants have been reported elsewhere (1, 2).

The ternary Redlich-Kister coefficients were obtained by a Simplex optimization technique and are reported in Table IV. The relative values of the root mean square deviation and the ternary constant C_{1} suggest that ternary data can be predicted directly from the binary systems.

Boiling points of system were correlated by the equation suggested by Wisniak and Tamir (10), based solely in the liquid composition

$$
\begin{array}{r}
T=\sum_{i=3}^{3} x_{i} T_{i}^{c}+\sum_{i=1}^{1}\left[x_{i} x_{j} \sum_{k=0}^{1} C_{k}\left(x_{i}-x_{j}\right)^{k}\right]+x_{1} x_{2} x_{3}[\mathrm{~A}+ \\
\left.B\left(x_{i}-x_{2}\right)+C\left(x_{1}-x_{3}\right)+D\left(x_{2}-x_{3}\right)+\ldots\right] \tag{5}
\end{array}
$$

In these equations, $T_{j}{ }^{\circ}$ is the boiling point of the pure component in kelvin, and i is the number of terms in the series expansion of $x_{i}-x_{j} . C_{k}$ are the binary constants where A, B, C, D are ternary constants (Figure 1). The various constants of eq 5 are reported in Table V, which also contains information

Figure 1. Isothermals for the ternary system (760 mmHg).
indicating the degree of goodness of the correlation.

Acknowledgment

Yehudit Reizner and Moshe Golden helped in the experimental measurements and calculations.

Glossary

$B_{i j}, C_{i j} \quad$ virial coefficients, eqs 1,2
$B_{i j}, C_{i j}, D_{i j}$ Redlich-Kister constants, eq 4
n number of components
$P \quad$ total pressure, mmHg
$P_{i}{ }^{\circ} \quad$ vapor pressure of pure component i, mmHg
$R \quad$ gas constant, $62363.3 \mathrm{~cm}^{3} \cdot \mathrm{mmHg} \cdot \mathrm{g}-\mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$ T boiling temperature of a mixture, K
$T_{i}{ }^{\circ} \quad$ boiling temperature of pure component, $i, \mathrm{~K}$
t temperature, ${ }^{\circ} \mathrm{C}$
$v_{i}{ }^{\text {L }} \quad$ moiar volume of liquid component $i, \mathrm{~mL} \cdot \mathrm{~g}-\mathrm{mol}^{-1}$
$x_{i}, y_{i} \quad$ mole fraction of component i in the liquid and vapor phases
$\alpha_{i} \quad$ coefficient, Antoine equation
$\beta_{i} \quad$ coefficient, Antoine equation
$\gamma_{i} \quad$ activity coefficient of component i
$\delta_{i} \quad$ coefficient, Antoine equation
$\delta_{i j} \quad$ virial coefficient parameter, eq 2
Registry No. 1, 108-05-4; 2, 106-94-5; 3, 80-62-6

Literature Cited

(1) Wisniak, J.; Tamir, A. Isobaric Vapor-Liquid Equilibria in the Systems Propyl Bromide-Methyl Ethyl Ketone, Methyl Ethyl Ketone-p-Xylene, and Vinyl Acetate-Methyl Methacrylate. J. Chem. Eng. Data, preceding paper in this issue.
(2) Wisniak, J.; Tamir, A. J. Chem. Eng. Data 1989, 34, 14.
(3) Boublikova, L.; Lu, B. C.-Y. J. Appl. Chem. 1989, 19, 89.
(4) Wisniak, J; Tamir, A. J. Chem. Eng. Data 1975, $20,168$.
(5) Van Ness, H. C.: Abbott, M. M. Classical Thermodynamics of Nonelectrolyte Solutions; McGraw-Hill: New York, 1982.
(6) Tsonopoulos, C. AIChE ' $\mathcal{A} .1974,33,263$.
(7) McDermott, C.; Ellis, S. R. M. Chem. Eng. Sci. 1965, 20, 293
(8) Wisniak, J.; Tamir, A. J. Chem. Eng. Data 1977, 22, 253
(9) Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 345.
(10) Wisniak, J.; Tamir, A. Chem. Eng. Sci. 1975, 30, 335.
(11) Selected Values of Properties of Chemical Components. TRC Tables; Thermodynamics Research Center Data Project: College Station, TX. 1974.
(12) Daubert, T. E.; Danner, R. P. Data Compilation. Tables of Properties of the Pure Compounds; Design Institute for Physical Properties, AIChE: New York, 1985
(13) Reid, R. C.i Prausnitz, J. M.; Sherwood, T. K. The Physical Properties of Gases and Liquids, 3rd ed.; McGraw-Hill: New York, 1977.
(14) Perry, R. H., Perry's Chemical Engineers' Handbook, 6th ed.; McGrawHill: New York, 1984; p 3-58.

[^0]
[^0]: Received for review June 5, 1989. Accepted November 5, 1989

